Advanced Technology Testing at the National Carbon Capture Center

Justin Anthony, Project Coordinator John Carroll, Research Process Engineer

Project Facts

- Located in Wilsonville, Alabama
- Sponsored by the U.S. Department of Energy and its National Energy Technology Laboratory
- Partners include the Electric Power Research Institute and leaders in the power and coal industries

Mission and Core Values

Offering a <u>world-class neutral</u> test facility and a highly specialized staff, to <u>accelerate the commercialization</u> of advanced technologies and enable coal based power plants to achieve <u>near-zero emissions</u> (low cost CO₂).

Unquestionable Trust Superior Performance Total Commitment

Safety

Focus Areas

- Hazard Recognition
- Site Awareness/Drills for Emergency Response
- Near Miss Reporting
- Housekeeping

Site Programs

- Safety Task Force
- Eyes on Safety
- Target Zero

Test Sites

Accomplishments

- 20 years with no lost time accidents
- 91,000 test hours for technology developers from U.S. and six other countries since 2008 founding of NCCC
- First coal-derived gas testing of solid oxide fuel cells and certain solvents, membranes, enzymes, etc.
- On-site scale-ups and process enhancements for ten technologies; scale-ups for testing at larger sites for five solvents; scale-up to commercial operation for one solvent
- Full compliance with environmental and government regulations, including on-time submittal and publication of technical reports

What NCCC Provides

- A cost-efficient test site for numerous technology developers
- Real industrial conditions with coalderived flue gas and syngas
- Capability for testing at multiple scales and for on-site scale-ups
- Expert staff for support of design, installation, and testing
- High quality data acquisition and gas/liquid sampling and analysis

Technology Development Process

PC4 Bench-Scale

- Simultaneous operation of up to five developers' test units
- Slipstream Solvent Test Unit (SSTU) for solvents in early development
- SSTU also used for solvent emissions studies and emission mitigation processes
- Flue gas/utilities and gas analysis systems operating independently of PC4 pilot-scale area

PC4 Pilot-Scale

- Simultaneous operation of developer test units and Pilot Solvent Test Unit (PSTU)
- PSTU offers flexible operation to match developers' planned commercial configuration
- PSTU also supports solvent emissions and degradation studies

Post-Combustion Accomplishments

- PC4 operation supported over 41,500 hours of technology testing
 - Over 6,000 hours under natural gas conditions
 - More than 20 developer projects completed
 - Tested enzymes, membranes, sorbents, solvents, and associated systems
 - Continued relationship with technology developers to achieve scale-ups and process enhancements
- PSTU operation for more than 13,000 hours
 - Demonstrated near 100% mass and energy balance closures
 - Supported commercial developers and DOE Carbon Capture Simulation Initiative
 - Several solvents progressed to further testing at other facilities
- Facility construction and upgrades
 - PC4 constructed in under three years
 - Plant capacity more than doubled from 12,000 to 30,000 lb/hr flue gas
 - Added systems (SSTU, air dilution, etc.) and enhanced instrumentation, sampling methods, and analysis systems

Current Post Combustion Tests

Pilot-scale

- GE w/ PSTU
- Linde/BASF @PB2
- Air Liquide @PB3
 <u>Bench-scale</u>
- DOE Membrane
- Akermin (PH2)
- SSTU
 - Baseline/emission
 - Green Technology: additive to amine
 - Cansolv

Aerosol/Emissions Testing

- Post-baghouse installation effects on flue gas properties underway.
- Effect on amine emissions from capture units being quantified.
- Use Electric Low Pressure Impactor (ELPI^{+TM}) to measure particle size distribution and count in real time.

Aerosol Test Results

- Aerosol number dropped significantly after the baghouse installation
- Low dilution temperature has very minimal effect on aerosol number concentration measured after the bag house installation
- More than 97% of cumulative aerosol number is below 0.1µm after the bag house installation

- E.C. Gaston power plant operating at low load
- Aerosol number concentration plotted before (Plot 1) and after (Plot 2 & 3) the E.C Gaston bag house installation
 - Plot 1: Relatively high 150°F ofDilution Temperature as testsdone in December, 2015
- Plot 2 and 3: 150°F and 110°F Dilution Temperatures respectively, tests done in June 2016

Aerosol Test Results

- Aerosols in the size of around 0.01µm can be observed when the load increased
- More than 98% of cumulative aerosol number is below 0.10µm after the bag house installation
- Further tests are on-going to investigate the effect of bag house installation on aerosol numbers

- E.C. Gaston power plant operating at relatively high load
- Aerosol number concentration plotted before (Plot 5) and after (Plot 6) the E.C Gaston bag house installation
- Aerosol number dropped significantly after the baghouse installation

Pre-Combustion/Gasification Infrastructure

- Coal-derived syngas from the Transport Gasifier train, in operation since 1996
- Operations conducted for nominally three 750-hour runs per year
- Syngas Conditioning Unit (SCU) with slipstreams at 5 to 500 lb/hr and syngas pre-treatments and process conditions tailored for each developer's needs
- Pilot unit for operation at 1,000 lb/hr
- State-of-the-art gas analysis and data acquisition
- On-site labs for sample analysis and processing

Gasification & Pre-Combustion Accomplishments

- Gasifier operation supported over 47,000 hours of technology testing
 - Biomass gasification in air- and oxygen-blown operation
 - Sensors: Tunable Diode Laser, particulate monitor, thermowells, coal feeder instrumentation
 - Catalysts: Fischer-Tropsch, water-gas shift, and COS hydrolysis
 - Sorbents: trace metals, CO₂, ammonia
 - Membranes: hydrogen and CO₂
 - Advanced processes: ammonium carbonate/bicarbonate solvent, syngas chemical looping, pressure-swing adsorption, pressure-swing Claus
 - Fuel cells
- Additional operation with CO₂ solvents, both on-line and off-line
- Achieved scale-ups and process intensification for several technologies including membranes, catalysts, sorbents
- Major upgrades to infrastructure such as new SCU control room and gas analysis building

G3/G4 Test Campaign Summary

- 1,457 hours of gasifier operation
 - 581 hours on PRB coal, 876 hours on lignite coal
- 9,990 technology developer testing hours

Developer	Technology	Hours
T · H · E OHIO SIATE UNIVERSITY	Chemical Looping	120
SRI Internationa ®	Solvent	400
MrTRR Membrane Technology & Research	Hydrogen Membrane	1,100
Media and Process Technology	Hydrogen Membrane	406
TDA Research	CO2 Sorbent with Integrated WGS	650
EMERSON	Temperature Sensors	1,900
PCME	Particulate Monitoring Sensor	1,900
JM⊠ Johnson Matthey	Mercury Sorbent	1,167
CCS Carbon Clean Solutions	Solvent	40
WGS & COS Developer	WGS	1,081
	COS	1,233

G5 Test Campaign

- 750 hours
 - PRB coal operation

Developer	Technology	
	Chemical Looping	
MTRR Technology & Research	Hydrogen Membranes	
Media and Process Technology	Hydrogen Membrane	
SR SOUTHERN RESEARCH	Coal-To-Liquids	
	Syngas Reformer	
SRI International	PBI Membrane	
TDA Research	CO2 Sorbent with Integrated WGS	
	0.1 MWe Sorbent System	
Johnson Matthey	Mercury Sorbent	
4	Temperature Sensors	
EMERSON	3D Level Measurement	
WGS & COS	WGS	
Developer	COS	

Successful Testing and Partnerships

INTERNATIONAL TEST CENTER NETWORK

Share CO₂ Capture Knowledge

to encourage global collaboration and accelerate technology development of cost effective CO₂ capture processes

Members

INTERNATIONAL TEST CENTER NETWORK

Acknowledgements

Luminant

ELECTRIC POWER RESEARCH INSTITUTE

More information: www.nationalcarboncapturecenter.com